Selecting top and bottom records - Read from TXT file - Export to TXT file - Descriptive statistics with Python Pandas Module

Selecting top and bottom records - Read from TXT file - Export to TXT file - Descriptive statistics with Python Pandas Module

Instructor-svgAl-Mamun Sarkar
Apr 01 , 2020

Selecting top and bottom records - Read from TXT file - Export to TXT file  - Descriptive statistics with Python Pandas Module

 

In [1]:

import pandas as pd
from numpy import random
import matplotlib.pyplot as plt

%matplotlib inline

 

In [2]:

names = ['Bob','Jessica','Mary','John','Mel']

 

In [3]:

random.seed(500)
random_names = [names[random.randint(low=0,high=len(names))] for i in range(1000)]
random_names[:5]

Out[3]:

['Mary', 'Jessica', 'Jessica', 'Bob', 'Jessica']

 

In [4]:

births = [random.randint(low=1, high=1000) for i in range(1000)]
births[:5]

Out[4]:

[969, 156, 78, 579, 974]

 

Create list by marging two list:

In [5]:

BabyData = list(zip(random_names, births))
BabyData[:5]

Out[5]:

[('Mary', 969),
 ('Jessica', 156),
 ('Jessica', 78),
 ('Bob', 579),
 ('Jessica', 974)]

 

Creating DataFrame:

In [6]:

df = pd.DataFrame(data=BabyData, columns=['Names', 'Births'])

 

In [7]:

df[:5]

Out[7]:

  Names Births
0 Mary 969
1 Jessica 156
2 Jessica 78
3 Bob 579
4 Jessica 974

 

Write to CSV file:

In [8]:

df.to_csv('Data/births1880.csv', index=False, header=False)

 

In [9]:

df = pd.read_csv('Data/births1880.csv')
df.info()

Out[9]:

RangeIndex: 999 entries, 0 to 998
Data columns (total 2 columns):
Mary    999 non-null object
969     999 non-null int64
dtypes: int64(1), object(1)
memory usage: 15.7+ KB

 

In [10]:

df.head()

Out[10]:

  Mary 969
0 Jessica 156
1 Jessica 78
2 Bob 579
3 Jessica 974
4 Jessica 125

 

In [11]:

df = pd.read_csv('Data/births1880.csv', header=None)
df.info()

Out[11]:

RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
0    1000 non-null object
1    1000 non-null int64
dtypes: int64(1), object(1)
memory usage: 15.7+ KB

 

In [12]:

df.tail()

Out[12]:

  0 1
995 John 152
996 Jessica 512
997 John 757
998 Jessica 295
999 John 153

 

In [13]:

df = pd.read_csv('Data/births1880.csv', names=['Names','Births'])
df.head(5)

Out[13]:

  Names Births
0 Mary 969
1 Jessica 156
2 Jessica 78
3 Bob 579
4 Jessica 974

 

In [14]:

df['Names'].unique()

Out[14]:

array(['Mary', 'Jessica', 'Bob', 'John', 'Mel'], dtype=object)

 

In [15]:

for x in df['Names'].unique():
    print(x)

Out[15]:

Mary
Jessica
Bob
John
Mel

 

In [16]:

print(df['Names'].describe())

Out[16]:

count     1000
unique       5
top        Bob
freq       206
Name: Names, dtype: object

 

Group By:

In [17]:

name = df.groupby('Names')
df = name.sum()

df

Out[18]:

  Births
Names  
Bob 107023
Jessica 98024
John 90899
Mary 99636
Mel 102523

 

Analyze Data:

Sorting Data:

In [19]:

Sorted = df.sort_values(['Births'], ascending=False)
Sorted.head(1)

Out[19]:

  Births
Names  
Bob 107023

 

In [20]:

df['Births'].max()

Out[20]:

107023

 

Present Data:

In [21]:

df['Births'].plot.bar()
print("The most popular name")
df.sort_values(by='Births', ascending=False)

Out[21]:

  Births
Names  
Bob 107023
Mel 102523
Mary 99636
Jessica 98024
John 90899

  • Share On:
  • fb
  • twitter
  • pinterest
  • instagram